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Abstract-- A tubular nonisothermal-nonadiabatic chemical reactor with consecutive reactions described 
by a set of three nonlinear parabolic equations, shows a sequence of period doubling bifurcations of a limit 
cycle. A numerical examination of the model reveals that complex periodic and irregular oscillations are pos- 
sible. With increasing values of the Peclet number, regular and irregular oscillations are suppressed and 
disappear. The results of this numerical study may be used to explain turbulization of laminar flames. 

INTRODUCTION 

"]'he pattern of multiple steady states and their 
dynamic behavior in chemically exothernfic reacting 
systems has been known for some time to he com- 
plex[l]. By far, the most extensively investigated and 
best understood exothermic reacting system is the 
stirred tank reactor in which simple[2-4] and 
complex[5-8] chemical reactions have been studiec[. 
The. model of a stirred tank reactor is represented by a 
set of nonlinear ordinary differential equations. Far less 
attention has been paid to tubular reacting systems 
whi.ch are described by a set of nonlinear parabolic dif- 
ferential equations. Hlavacek et al.[9-10] and Varma 
and Amundson[l l ]  observed multiple steady states 
and periodic oscillations of concentration and tem- 
perature fields. 

Recently Puszynski and Hlavacek[12] observed 
experimentally complex and irregular temperature os- 
cillations in a long tubular packed bed. Major new re- 
sults in nonlinear dynamics have given great insight 
into the behavior of nonlinear systems. Many reacting 
systems display motion which is, in a certain sense, 
well-ordered and regular. By this we mean that the 
associated trajectories are forever contined to well 
defined regions of phase space and show little changes 
in character when small changes in initial conditions 
are made. [n the irregular regime, the trajectories are 
very sensitive to small perturbations in inital condi- 
tions and can wander in an erratic-looking manner. 

*To whom all correspondence should be addressed. 

The irregular regimes have been observed in some 
chemically reacting systems[7,8]. The study of irregular 
behavior was performed only for systems which are 
perfectly mixed, i.e., which do not feature any space 
gradients. To our knowledge, irregular oscillations in 
chemically reacting systems with space gradients (e.g. 
tubular flow reactors) have not been discovered so far. 
Since the presence of irregular regime is of great im- 
portance in the flame theory, the aim of our effort was 
to perform a numerical search which hopefully could 
locate interesting bifurcation phenomena and irregular 
dynamic behavior in reacting systems with space 
gradients. 

The goal of this paper is twofold: 
(1) To show that consecutive chemical reactiLons oc- 

curring in a tubular flow reactor may give rise to 
period doubling bifurcations and eventually to ir- 
regular oscillations. 

(2) To show that for higher values of the Peclet 
number (i.e. for strongly convective systems) all type 
of oscillations disappear. 

GOVERNING EQUATIONS 

For homogeneous consecutive first order reactions 
A-,B-,C occurring in a tubular nonadiabatic-non- 
isothermal system, the transient equations can be 
written in the following dimensionless form: 

Ou 1 0 ~ u  a u  D a u e x P l l  
Or Pe Ox ~ Ox w" (1) 
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O r _  1 O =v c3v D a u  exp(  w _; 
O r  Pe 3.~* 8 x  l ~ w  

- D a S v  exp(-  1 k_r , + s w J (2) 

O w _  1 D2w  OW + D a B  u e x p  w 
8 r Pe Ox  ~ Ox  (1Z 7 7  ) 

( k w  i . ,  
- Da B a S v exp i + T e w - ` 8  ( w -  u~,~)(3i 

subject to boundary conditions 

1 Ou  
x:=0 l = u -  - -  

Pe Ox  
(4; 

l Ov 

Pe  Ox  

1 O w  
H :  - -  

Pe Ox  

X : =  1 
Ou Ov Ow 

0. (5) 
Ox  Ox Ox  

The details of the development of this model can be 
found elsewhere[9]. The variables u, L:, and w, 
represent dimensionless concentrations of component 
A, component B, and temperature, respectively. 

In the text above, we have denoted: Pe is the Peclet 
number, Da the Damk6hler numer, ~ the dimension- 
less activation energy, B the dimensionless adiabatic 
temperature rise, a the ratio of heat effects, ,8 the 
dimensionless heat transfer coefficient, S the 
selectivity, w~ the dimensionless temperature of 
cooling medium, and k the ratio of activation 
energies[9]. 

P E R I O D  D O U B U N G  B I F U R C A T I O N S  

The set of nonlinear parabolic equations, Eqs. (1)- 
(5), was integrated by a Crank-Nicolson method with an 
automatic time step adjustment. The error of integra- 
tion was controlled to four decimal places. 

Irregular behavior of reacting systems has been de- 
scribed for a number of isothermal{13,14] and 
nonisothermal[7,8] systems. However, to our knowl- 
edge, no example of irregular oscillations in reacting 
systems described by partial differen.tial equations has 
been reported so far. 

For our study, we have chosen the system of lwo 
consecutive reactions studied by Kahlert, R6ssler, and 
Varma[7]. They have shown that in a continuous 
stirred tank reactor, a sequence of period-doubling 
bifurcations of a limit cycle may occur which leads into 
a pat{ern of periodic and irregular behavior. This 

Table I, The va lues  of governing  paramelers  

Da 026 
E 0.0 
B 57.77 
a 0.426 
,8 7995 
s 0.5 
u; c 0.0 

k l J) 

Fig. I, Chaotic behavior  at Pe=O.04.  

system is represented by a set of three non!mear 
ordinary differential equations. It is noted that the 
equations describing the stirred tank reactors are tile 
limiting cases of Fqs.(l)-(5) describing a tubu]a~ flow 
reactor, for Pe --, O. 

It is obviously impossible to vary all nine param- 
eters to analyze the dynamic behavior of the r/odel 
in Eqs.(1)-(5). To rationalize the search in the para- 
metric space, we have used the results presented by 
Kahlert et al.[7] and chose the Peclet number as the 
bifurcation parameter. The values of the governing 
parameters are reported in Table 1. 

For the system under consideration, we haw? cal- 
culated the integral mean values of the variables u, v, 
and w and plotted these values in the following 
figures. For the values from Table 1 and for Pe ~ 0, 
Kahlert et al.[7] reported chaotic behavior of the 
system described by Eqs.(l)-(5). We started the nu 
merical simulation of the model for Pe=0.01. For 
Pe=0 .04  the model reveals the chaotic behavior as 
shown in Fig. 1. Increasing the value of Pe, Pe= 0.043, 
the model gives rise to a period-sixteen limit cycle (Fig. 

2). 
For Pe=0.0488. the numerical solution of the 

parabolic equations results in a limit cycle with the 
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Fig. 2 Period s ix teen  limit cycle  at Pe=O.043 .  Fig. 4. Period four limil cyc le  at Pe=O.05.  

Fig. 3, Period eight  limit cyc le  at P e = 0 , 0 4 8 8 ,  

period eight as depicted m Fig. 3. For Pe=0.05 the 
model gives rise to a period four limit cycle as shown 
in Fig. 4. For Pe=0.16 the numerical solution of the 
system results in a limit cycle with the period two (Fig. 
5). The bifurcation to a period one limit cycle occurs at 
Pe=0.2l  (Fig. 6). With increasing value of Peclel 
number the limit cycle shrinks and at a certain value 
of Peclet number disappears; from the model we cart 
estimate Pc=0.33 as depicted in Fig. 7. These calcula- 
tions are in agreement with the results[9], the higher is 
the Peclet number the lower is the probability of the 
occurrence of any type of oscillations. 

One of the routes to chaos is a sequence of period 
doubling bifurcation of a limit cycle which has been 
observed in the experiments on Rayleigh-Benard 
convection[15], nonlinear electrical oscillators[1611, 
shallow water waves[17], and the Belousov-Zhabm- 
tinski reaction. As the parameter is varied, the sys- 
tem changes from simple periodic to complex aperiod- 
ic rnotion. In the limit of aperiodic behavior, there 
is a unique and hence universal solution common 
to all systems undergoing period doubling bifurca- 

Fig. 5. Period two limit cyc le  at Pe=O.16.  

Fig. 6. Period one  limit cycle  at P c = 0 . 2 1 .  

tions. This fact implies remarkable consequences. 
For a given system, if we denote by a,, the value of the 
parameter at which its period doubles for the nth time, 
the sequence of successive bifurcation values of a in 
the limit behaves like a geometric series, that is to say, 
the ratio between two subsequent differences between 
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Fig. 7. Steady state at Pe=O.33. 

irregular behavior~period sixteen~period eight-,period 
four-period two*period one-~stable steady state. It is 
well established experimental fact that flame fronts 
may show the irregular pulsations[18]. Based on our 
results, these pulsations can be explained by in- 
teraction of heat and mass transfer and a chemical 
reaction. However, for higher values of the Peclet 
number, the irregular behavior is suppressed and dis- 
appears. We have performed an analysis for the Lewis 
number Le:PeM/PeH= ]. Based on results reported for 
examples in the Aris book[l], we can expect that for 
Le>l complex oscillations may exist in a larger domain 
of parameters. 

NOMENCLATURE 

Fig. 8. Feigenbaum sequence of the model. 

adjacent values converges towards a fixed value: 

~ =  a~+~- an :4.6692016.  (16) 

This definite number (Feigenbaum number) must ap- 
pear as a natural constant in all systems exhibiting a 
period-doubling route to chaos. Fig. 8 illustrates period" 
doubling bifurcations of a limit cycle in the model as the 
Peclet number decreases. The ratio between two sub- 
sequent differences between adjacent Peclet numbers 

in the model ~,,= 0 .043-0 .0488  --~.83 seems to 
0 .0488-  0.05 

be close to the natural Feigenbaum number. 

CONCLUSIONS 

The numerical results reported here indicated that 
period doubling bifurcations may exist also for a set of 
nonlinear parabolic equations. It has been ,.shown tha~: 
the irregular behavior of the system disappears for 
higher values of the Peclet number. With increasing 
values of Pe we have observed the following sequence: 

D a  

k 
Le 
Pe 
S 
U 

U 

W 

W c 

X : 

bifurcation parameter 
dimensionless adiabatic temperature rise 
_ ( - a l l ) C o  E 

Damk6hler number [ -  kJJU] 
ratio of activation energy [ = E2/E1] 
Lewis number [ = PeM/PeH] 
Peclet number [= UL/D] 
selectivity [ = k2dklo] 
dimensionless concentration of A 
dimensionless concentration of B 
dimensionless temperature [ = E/RT o (T-To)] 
dimensionless temperature of cooling medium 
axial coordinate 

Greek 

fl  : 

E : 

Letters 

ratio of heat effects [=AH2/zlt-I 1] 
dimensionless heat transfer coefficient 
dimensionless activation energy [ = (E1/RTo) -I] 

Subscripts 

H : heat transfer 
M : mass transfer 
n : nth time period doubling 
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