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Abstract— A tubular nonisothermal-nonadiabatic chemical reactor with consecutive reactions described
by a set of three nonlinear parabolic equations, shows a sequence of period doubling bifurcations of a limit
cycle. A numerical examination of the model reveals that complex periodic and irregular oscillations are pos-
sible. With increasing values of the Peclet number, regular and irregular oscillations are suppressed and
disappear. The results of this numerical study may be used to explain turbulization of laminar flames.

INTRODUCTION

The pattern of multiple steady states and their
dynamic behavior in chemically exotherrnic reacting
systems has been known for some time to be conr
plex({1]. By far, the most extensively investigated and
best understood exothermic reacting system is the
stirred tank reactor in which simple[2-4] and
comiplex{5-8] chemical reactions have been studied.
The model of a stirred tank reactor is represented by a
set of nonlinear ordinary differential equations. Far less
attention has been paid to tubular reacting systems
which are described by a set of nonlinear parabolic dif-
ferential equations. Hlavacek et al.[9-10] and Varma
and Amundson[11] observed multiple steady states
and periodic oscillations of concentration and tem-
perature fields.

Recently Puszynski and Hlavacek[12] observed
experimentally complex and irregular terperature os-
cillations in a long tubular packed bed. Major new re-
sults in nonlinear dynamics have given great insight
into the behavior of nonlinear systems. Many reacting
systems display motion which is, in a certain sense,
well-ordered and regular. By this we mean that the
associated trajectories are forever confined to well
defined regions of phase space and show little changes
in character when small changes in initial conditions
are made. In the irregular regime, the trajectories are
very sensitive to small perturbations in inital condi-
tions and can wander in an erratic-looking manner.

*To whom all correspondence should be addressed.

The irregular regimes have been observed in some
chemically reacting systems[7,8]. The study of irregular
behavior was performed only for systems which are
perfectly mixed, i.e., which do not feature any space
gradients. To our knowledge, irregular oscillations in
chemically reacting systems with space gradients (e.g.
tubular flow reactors) have not been discovered so far.
Since the presence of irregular regime is of great im-
portance in the flame theory, the aim of our effort was
to perform a numerical search which hopefully could
locate interesting bifurcation phenomena and irregular
dynamic behavior in reacting systems with space
gradients.

The goal of this paper is twofold:

(1) To show that consecutive chemical reactions oc-
curring in a tubular flow reactor may give rise to
period doubling bifurcations and eventually lo ir-
regular oscillations.

{2) To show that for higher values of the Peclel
number (i.e. for strongly convective systems) all type
of oscillations disappeatr.

GOVERNING EQUATIONS

For homogeneous consecutive first order reactions
A=B-C occurring in a tubular nonadiabatic-non-
isothermal system, the transient equations can be
written in the following dimensionless form:
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The details of the development of this model can be

found elsewhere[9]. The variables u, ¢ and u,

represent dimensionless concentrations of component
A, component B, and temperature, respectively.

In the text above, we have denoted: Pe is the Peclet
number, Da the Damkohler numer, ¢ the dimension-
less activation energy, B the dimensionless adiabatic
temperature rise, @ the ratio of heat effects, 8 the
dimensionless heat transfer coefficient, S the
selectivity, w_ the dimensionless temperature of
cooling medium, and & the ratio of activation
energies[9].

PERIOD DOUBLING BIFURCATIONS

The set of nonlinear parabolic equations, Egs. (1)-
(5). was integrated by a Crank-Nicolson method with an
automatic time step adjusiment. The error of integra-
tion was controlled to four decimal places.

Irregular behavior of reacting systems has been de-
scribed for a number of isothermal[l13,14] and
nonisothermal{7,8] systems. However, to our knowl-
edge, no example of irregular oscillations in reacting
systems described by partial differential equations has
been reported so far.

For our study, we have chosen the system of two
consecutive reactions studied by Kahlert, Réssler, and
Varma(7]. They have shown that in a continuous
stirred tank reactor, a sequence of period-doubling
bifurcations of a limit cycle may occur whith leads into
a patiern of periodic and irregular behavior. This
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Table 1. The values of governing parameters

Da-0.26
e -00
B -57.77
a -0426
B -7.995
S -05
we. = 0.0
k -1.0
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Fig. 1. Chaotic behavior at Pe=0.04.

system is represented by a set of three noniinear
ordinary differential equations. It is noted that the
equations describing the stirred tank reactors are the
limiting cases of Eqs.(IH5) describing a tubular flow
reactor, for Pe — .

It is obviously impossible to vary all nine param-
eters 1o analyze the dynamic behavior of the model
in Egs.(1){5). To rationalize the search in the para-
metric space, we have used the results presented by
Kahlert et al.[7] and chose the Peclet number as the
bifurcation parameter. The values of the governing
parameters are reported in Table 1.

For the system under consideration, we have cal-
culated the integral mean values of the vanables 4, v,
and w and plotted these values in the following
figures. For the values from Table 1 and for Pe — 0,
Kahlert et al.[7] reported chaotic behavior of the
system described by Eqgs(1)}(5). We started the nu-
merical simulation of the model for Pe=0.01. For
Pe=10.04 the model reveals the chaotic behavior as
shown in Fig. 1. Increasing the value of Pe, Pe=0.043,
the model gives rise to a period-sixteen limit cycle (Fig.
2).

For Pe=0.0488, the numerical solution of the
parabolic equations results in a limit cycle with the
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Fig. 2. Period sixteen limit cycle at Pe=0.043.
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Fig. 3. Period eight limit cycle at Pe=0.0488.

period eight as depicted in Fig. 3. For Pe=0.05 the
model gives rise to a period four limit cycle as shown
in Fig. 4. For Pe=0.16 the numerical solution of the
system results in a limit cycle with the pericd two (Fig.
3). The bifurcation to a period one limit cycle occurs at
Pe=0.21 (Fig. 6). With increasing value of Peclel
number the limit cycle shrinks and at a certain value
of Peclet number disappears; from the model we can
estimate Pe==(.33 as depicted in Fig. 7. These calcula-
tions are in agreement with the results[9], the higher is
the Peclet number the lower is the probability of the
occurrence of any type of oscillations.

One of the routes to chaos is a sequence of period
doubling bifurcation of a limit cycle which has been
observed in the experiments on Rayleigh-Benard
convection[15], nonlinear electrical oscillators[16],
shallow water waves[17], and the Belousov-Zhabo-
tinski reaction. As the parameter is varied, the sys-
tem changes from simple periodic to complex aperiod-
ic motion. In the limit of aperiodic behavior, there
is a unique and hence universal solution comnion
to all systems undergoing period doubling bifurca-
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Fig. 4. Period four limit cycle at Pe=0.05,
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Fig. 5. Period two limit cycle at Pe=0.16.
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Fig. 6. Period one limit cycle at Pe=0.21.

tions. This fact implies remarkable consequences.
For a given system, if we denote by a, the value of the
parameter at which its period doubles for the nth time,
the sequence of successive bifurcation values of a in
the limit behaves like a geometric series, that is to say,
the ratio betweern two subsequent differences between
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Fig. 7. Steady state at Pe=0.33.
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Fig. 8. Feigenbaum sequence of the model.
adjacent values converges towards a fixed value:
8,= a1~ =4 £692016. (16)

Qn~ Gy

This definite number (Feigenbaum number) must ap-
pear as a natural constant in all systems exhibiting a
period-doubling route to chaos. Fig. 8 illustrates period
doubling bifurcations of a limit cycle in the model as the
Peclet number decreases. The ratio between two sub-
sequent differences between adjacent Peclet numbers

. _0.043-0.0488
in the model &,= 00488~ 0.05

be close to the natural Feigenbaum number.

=4 .83 seems to

CONCLUSIONS

The numerical results reported here indicated that
period doubling bifurcations may exist also for a set of
nonlinear parabolic equations. It has been shown that
the irregular behavior of the system disappears for
higher values of the Peclet number. With increasing
values of Pe we have observed the following sequence:
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irregular behavior-period sixteen-period eight--period
four-period twosperiod one-stable steady state. It is
well established experimental fact that flame fronts
may show the irregular pulsations[18]. Based on our
results, these pulsations can be explained by in-
teraction of heat and mass transfer and a chemical
reaction. However, for higher values of the Peclet
number, the irregular behavior is suppressed and dis-
appears. We have performed an analysis for the Lewis
number Le=Pe,,/Pe;,= 1. Based on results reported for
examples in the Aris book[1}, we can expect that for
Le>1complex oscillations may exist in a larger domain
of parameters.

NOMENCLATURE
a : bifurcation parameter
B . dimensionless adiabatic temperature rise
[: (" A}D Co E

oC, T RI’
Da : Damkohler number [=k L/
kR ratio of activation energy [=E,/E]]
Le : Lewis number [=Pe,,/Pe,]
Pe : Peclet number [= UL/D]
S ¢ selectivity [=RyR 0]
u : dimensionless concentration of A
v dimensionless concentration of B
w : dimensionless temperature [=E/RT? (T-T)]
w, : dimensionless temperature of cooling medium
x . axial coordinate

Greek Letters
@ ratio of heat effects [=AH,IAH|]

B . dimensionless heat transfer coefficient
e : dimensionless activation energy [=(£,/RTy)"']
Subscripts
H : heat transfer
M . mass transfer
n : nthtime period doubling
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